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Abstract. Recently, zero-shot image captioning has gained increasing
attention, where only text data is available for training. The remarkable
progress in text-to-image di�usion model presents the potential to re-
solve this task by employing synthetic image-caption pairs generated by
this pre-trained prior. Nonetheless, the defective details in the salient re-
gions of the synthetic images introduce semantic misalignment between
the synthetic image and text, leading to compromised results. To address
this challenge, we propose a novel Patch-wise Cross-modal feature Mix-
up (PCM) mechanism to adaptively mitigate the unfaithful contents in a
�ne-grained manner during training, which can be integrated into most of
encoder-decoder frameworks, introducing our PCM-Net. Speci�cally, for
each input image, salient visual concepts in the image are �rst detected
considering the image-text similarity in CLIP space. Next, the patch-wise
visual features of the input image are selectively fused with the textual
features of the salient visual concepts, leading to a mixed-up feature
map with less defective content. Finally, a visual-semantic encoder is ex-
ploited to re�ne the derived feature map, which is further incorporated
into the sentence decoder for caption generation. Additionally, to facili-
tate the model training with synthetic data, a novel CLIP-weighted cross-
entropy loss is devised to prioritize the high-quality image-text pairs over
the low-quality counterparts. Extensive experiments on MSCOCO and
Flickr30k datasets demonstrate the superiority of our PCM-Net com-
pared with state-of-the-art VLMs-based approaches. It is noteworthy
that our PCM-Net ranks �rst in both in-domain and cross-domain zero-
shot image captioning. The synthetic dataset SynthImgCap and code are
available at https://jianjieluo.github.io/SynthImgCap.
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1 Introduction

Image captioning aims to describe the content of an image with natural lan-
guage. The conventional practice to resolve this task is to train an encoder-
decoder model in an end-to-end manner with well-aligned pairs of images and

�J. Feng and T. Yao are the corresponding authors.
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(b) VLMs-based Methods for Zero-shot Image Captioning.

(a) Supervised Image Captioning (SIC).
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(c) Our PCM-Net.
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Fig. 1: Training paradigms for image captioning: (a) Training with well-aligned image-
sentence pairs for Supervised Image Captioning (SIC); (b) Training with text-only
data in VLMs-based model for Zero-shot Image Captioning (ZIC); (c) Training with
synthetic image-text pairs in our PCM-Net for ZIC.

texts, widely known as Supervised Image Captioning (SIC) (Figure 1 (a)). More
advanced methods are proposed [3,13,18�20,25,26,28,46] to better capture the
correlation between visual and linguistic elements. However, the extensive labor
required for the data collection makes it di�cult for SIC model to scale up.

To address this challenge, Zero-shot Image Captioning (ZIC) is introduced
and manages to learn the image-to-text mappings without relying on annotated
data, which has attracted great interest recently. The popular recipe for ZIC
is to bridge vision and language through an intermediate latent representation
using unpaired images and sentences [8,9]. Another type of VLMs-based solution
(Figure 1 (b)) for ZIC involves developing an image captioning model with high-
quality text-only data, where the pre-trained cross-modal prior from large-scale
vision-language models (VLMs) like CLIP [32] is leveraged to align the text and
image. In VLMs-based approaches, the captioning model is trained to generate
caption with the corresponding textual feature in CLIP space, which will be
replaced with the visual feature of the input image during inference. It is assumed
that the textual and visual features sharing similar semantics should be close in
CLIP space. However, this assumption may not always hold due to the inherent
modality gap [21], leading to discrepancy between training and inference.

Motivated by the powerful capability of text-to-image di�usion model [33,
35, 36] in producing images conditioning on text prompts, we propose to gen-
erate synthetic images for the text data, and train the captioning model with
the obtained synthetic image-text pair to mitigate the above issue. Nevertheless,
the presence of �awed or unfaithful details in the salient regions of the synthetic
images enlarges not only the distribution discrepancy between the synthetic and
real images but also the semantic gap between the synthetic image and the text,
thereby hindering the learning of visual-semantic alignment. Since generating
high-�delity images usually requires rigorous prompt engineering, our work pri-
marily aims to automatically mitigate the unfaithful contents in the synthetic
images during training. To achieve this goal, a novel patch-wise cross-modal fea-
ture mix-up (PCM) mechanism is devised in this paper, which can be integrated
into most of encoder-decoder frameworks, introducing our PCM-Net (Figure 1
(c)). Speci�cally, given an input image, a set of salient visual concepts is con-
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structed by performing zero-shot entity classi�cation of images in CLIP space.
Then, the �ne-grained patch features of the synthetic image are mixed up with
the textual features of the salient visual concepts depending on patch-wise cross-
modal similarity, which e�ectively reduces the �awed or unfaithful details in the
synthetic images. Finally, the derived features are passed through an encoder-
decoder network for caption generation. Compared to the former VLMs-based
approaches which rely on the global feature of CLIP, our PCM-Net mitigates
the modality gap in pixel space by using synthetic images for training, where
�ne-grained visual features are available to boost the visual-semantic alignment.
Additionally, we propose a new CLIP-weighted cross-entropy loss to facilitate the
robust training of the captioning model with noisy synthetic data by adaptively
re-weighting the loss for each word according to the predicted word distribution
and the semantic relevance between the text and the synthetic image.

To summarize, our contributions are as follows: (I) We propose leveraging the
powerful text-to-image di�usion model to generate synthetic images for text-only
data, and further train the captioning model with these synthetic pairs, which
mitigates the discrepancy between training and inference for zero-shot image
captioning. (II) We propose a patch-wise cross-modal feature mix-up (PCM)
mechanism to close the gap between synthetic and real images by automatically
mitigating the defective contents in the synthetic images. (III) We propose a
novel CLIP-weighted cross-entropy loss (CXE) to improve the training of cap-
tioning model with the noisy synthetic data. (IV) Extensive experiments con-
ducted on MSCOCO and Flickr30k demonstrate our PCM-Net's e�ectiveness.

2 Related Work

2.1 Supervised Image Captioning

Image captioning, a fundamental task in the vision-language domain, aims to
describe semantic content within an image using natural language. Conventional
image captioning methods train an encoder-decoder neural network on well-
matched image-sentence pairs in a supervised manner. Early attempts [6,14,41,
43] leverage CNNs to encode visual content and RNNs to decode sentences. Later
researches focus on enriching the visual feature representation by incorporating
semantic attributes [49, 50] or object region features [3]. The performances of
supervised image captioning are further boosted by modeling visual relationships
in the image [45, 47, 48]. Recently, inspired by the success of the Transformer
architecture [39], numerous Transformer-based image captioning models have
emerged [5,10,26,29,44]. Despite the signi�cant progress in supervised learning
tasks, the collection of annotated training datasets is labor-intensive and time-
consuming, which restricts the scalability of the captioning model.

2.2 Zero-shot Image Captioning

Zero-shot image captioning aims to learn the captioning model without human-
annotated data. Recently, the vision-language pre-training models (VLMs) trained
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on large-scale image-text pairs crawled from the web have demonstrated great
zero-shot capability in image captioning. For example, SimVLM [42] pre-trains
the VLM with a single pre�x language modeling objective and infers the image
caption without �ne-tuning. BLIP-2 [16] only pre-trains a Querying Transformer
to bridge the modality gap between the pre-trained image encoder and the large
language model to further boost zero-shot image captioning. ZeroCap [38] in-
stead steers GPT-2 to generate sentences related to the visual content under the
guidance of CLIP [32] without further training. However, due to the noise in
the web data, these VLMs-based approaches struggle to generate captions with
correct grammar without �ne-tuning on paired data.

Therefore, another approach for ZIC is to build an image captioning model
based on high-quality text-only data. The prevalent methods [17,27,37] leverage
the pre-trained cross-modal prior of the VLMs to facilitate the learning of visual-
semantic alignment for zero-shot image captioning. For instance, MAGIC [37]
�ne-tunes GPT-2 on the training corpus, and modulates the probability of each
candidate word during decoding with the cross-modal similarity in CLIP space.
Furthermore, several works [7, 17, 27, 51] propose to train the captioning model
with the textual features of the target caption as input at training stage, and
replace it with the visual feature of the input image during inference. The pio-
neering CapDec [27] applies noise injection to input textual features in training
to overcome the modality gap [21], while DeCap [17] projects the visual fea-
ture into the textual feature space based on the training corpus at inference for
the same purpose. CgT-GAN [51] instead mitigates the modality gap by incor-
porating real images as input in training via additional reinforcement learning
rewarded by cross-modal similarity. ViECap [7] builds a text prompt from vi-
sual entities to trigger the transferability of GPT-2. Most recently, SynTIC [24]
employs the Stable Di�usion [35] model to generate synthetic images for train-
ing, and further minimize the global feature distance between synthetic and real
images through contrastive learning techniques.

Summary. SynTIC [24] is most related to our work, which capitalizes on
global features of the synthetic images for ZIC. Going beyond SynTIC, our PCM-
Net explores spatial visual features from CLIP and leverages its capability of
cross-modal alignment to mitigate �awed content in synthetic images, addressing
distribution discrepancies with real images at a �ne-grained level. Additionally,
we introduce a novel CLIP-weighted cross-entropy loss to improve the robustness
and performance of the captioning model when trained on noisy synthetic data.

3 Method

Zero-shot image captioning task aims to train an image-to-text captioning model
on a text corpus only, without the associated images. Most existing methods
learn to generate the caption conditioned on the corresponding textual feature
during training, framing it into a task of caption reconstruction. While at infer-
ence stage, the textual feature is simply replaced with the global visual feature of
the input image within the same multi-modal feature space. As a result, seman-
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Fig. 2: An overview of our proposed PCM-Net. The �awed or unfaithful patches (e.g.,
poor facial details or missing limbs) in the salient regions of synthetic images would be
replaced by semantically aligned textual patches in (a) Patch-wise Cross-modal Feature
Mix-up. The mixed-up features are further encoded by (b) Visual-semantic Encoder,
followed by (c) Sentence Decoder for caption generation.

tic misalignment arises during inference due to the inherent modality gap [21]
between the caption and the image in the multi-modal space, leading to subopti-
mal results. To address this issue, we propose leveraging synthetic image-caption
pairs generated by text-to-image di�usion models [12, 35] for training instead,
unleashing the pre-trained di�usion prior for ZIC. However, the distribution dis-
crepancy between the synthetic and real images presents a challenge for training
the captioning model. In this paper, we devise a novel Patch-wise Cross-modal
Feature Mix-up mechanism to bridge this gap and seamlessly incorporate it into
an encoder-decoder captioning framework, introducing our proposed PCM-Net.
The framework of our PCM-Net is illustrated in Figure 2. In this section, we
�rst demonstrate the details about how to build the synthetic dataset, followed
by the speci�cs of our PCM-Net. Lastly, the training loss is elaborated.

3.1 Synthetic Image Generation

The recent progress in text-to-image di�usion models [12,35] has demonstrated
the capability of di�usion models to generate high-�delity images that are se-
mantically aligned with the given texts. This highlights the promise of employ-
ing di�usion models to produce synthetic image-sentence pairs that could ben-
e�t the cross-modal vision-language learning in zero-shot image captioning. Let
S = {Si}Ni=1 denote a text corpus including N sentences for zero-shot image
captioning, where each Si consists of Ns words. Speci�cally, an o�-the-shelf text-
to-image generation model G (i.e., Stable Di�usion [35]) is exploited to generate
a synthetic image Ii for each sentence Si ∈ S, resulting in a synthetic dataset
D = {(Ii, Si)}Ni=1. Please note that all the experiments are conducted on D.
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3.2 Patch-wise Cross-modal Feature Mix-up

We have found that straightforwardly exploiting synthetic images for training
yields compromised results in our experiments. The reason is that the �awed
or unfaithful details in the salient areas of these images signi�cantly enlarge
not only the discrepancy between the synthetic and real images but also the
semantic gap between the synthetic image and the sentence, hindering the learn-
ing of visual-semantic alignment. However, high-�delity image generation usu-
ally requires intricate prompt engineering, and a universal solution for di�erent
di�usion models has not been established yet. Therefore, we propose a novel
Patch-wise Cross-modal feature Mix-up (PCM) mechanism that automatically
mitigates the possible irrelevant or defective contents in the salient areas of syn-
thetic images during training, which avoids the complicated prompt engineering
or sophisticated model design for faithful text-to-image generation. Speci�cally,
the visual features of the holistic image I and its local patches are �rst extracted
by the image encoder of CLIP. Let gI and VI = {vj}NI

j=1 denote the global image
feature and the grid feature map with NI local patch features, respectively.

Salient Visual Concepts Detection. To bypass the unfaithful or defective
contents in the salient areas of the synthetic images, salient visual concepts of
each image are required to be �rst detected, which is achieved by zero-shot
entity classi�cation in CLIP space. Speci�cally, a visual concept vocabulary C =
{cj}Nc

j=1 is built from the high-frequency nouns in the training corpus S, whereNc

is the concept vocabulary size. Then, the cosine similarity between the template
sentence �A photo of {cj}" for each cj ∈ C and the global visual feature gI is
calculated to retrieve top-K salient visual concepts Cs = {ck}Kk=1. Formally, this
process is expressed as:

Cs = argmaxK
cj∈C

CosSim(cj ,gI) =
gI · cj

∥gI∥∥cj∥
, (1)

where cj is the textual feature of the corresponding template sentence. Given
Cs, a sequence of textual basis vectors Cs = {ck}Kk=1 are naturally formed by
extracting the corresponding global textual feature of each ck.

Patch-wise Cross-modal Feature Mix-up. Our proposed PCM aims to
automatically exclude the potential irrelevant and �awed parts in the salient
regions of the synthetic images during training in a �ne-grained manner. To
achieve this goal, the original visual feature map VI is novelly transformed into
a new textual feature map VT in our PCM by considering the semantic similarity
between each local patch vj and all the salient concept features Cs = {ck}Kk=1.
However, the modality gap between vj and ck inherently exists in CLIP space.
Inspired by DenseCLIP [34], we employ the classi�cation head for the [CLS]
token in the image encoder of CLIP to linearly map vj to v′

j for measuring

patch-text similarity, resulting in V ′
I = {v′

j}
NI
j=1. Therefore, a patch-wise a�nity

mapping A ∈ RNI×K can be computed as:

ajk = CosSim(v′
j , ck) =

v′
j · ck

∥v′
j∥∥ck∥

, (2)
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where ajk is the similarity score between the j-th local patch and the k-th salient
concept. Then, we softly aggregate the visual concept features in Cs for each
local patch v′

j depending on A, leading to a textual feature map VT = {vt
j}

NI
j=1

for each synthetic image I:

vt
j =

K∑
k=1

αjk ∗ ck =

K∑
k=1

exp(ajk/τ)∑K
m=1 exp(ajm/τ)

∗ ck, (3)

where τ is the temperature.
It can be observed that VT only contains the semantics of salient concepts,

which would constrain the captioning model to produce short captions. To al-
leviate the information loss, we further mix up VI and VT into VIT as per A.
Technically, we pinpoint the top-M visual patches in VI that are highly related
to the salient concept features Cs based on A, and replace them with the corre-
sponding ones from VT . In contrast to the training process with synthetic data,
we concatenate the aforementioned top-M patches from VT with VI to derive
VIT for the real images during inference. The mixed-up feature map VIT is then
passed through an encoder-decoder framework for zero-shot image captioning.

3.3 Image Captioner

The image captioning model is framed as a typical Transformer-based encoder-
decoder framework with minor adaptation for the mixed-up feature obtained
in the proposed PCM. Formally, given both the global image feature gI and
the mixed-up feature map VIT for the input synthetic image I, we �rst project
both these features into a joint embedding space and concatenate the results

into V(0) = {g(0)
I ,v

(0)
1 ,v

(0)
2 , ...,v

(0)
NI

}. Additionally, the position encodings and

token-type embeddings are added to V(0) following general practices, which is,
in turn, fed into the encoder-decoder for caption generation.

Visual-Semantic Encoder. The visual-semantic encoder consists of Ne

Transformer-based blocks, where each block includes a multi-head self-attention
layer followed by a feed-forward layer. Formally, the output from a vanilla multi-
head self-attention layer (MHA) with H attention heads can be computed as:

MHA(Q,K,V) = Concat(head1, ..., headH)WO,

headi = Attention(QWQ
i ,KWK

i ,VWV
i ),

Attention(Q,K,V) = softmax(
QKT

√
d

)V,

(4)

where Concat(·) is the concatenation operation. WQ
i , WK

i , WV
i , WO are the

weight matrices of the i-th head, and d is a scaling factor. Therefore, the op-
eration of the i-th block in the visual-semantic encoder can be expressed as:

V(i+1) = F(LN(V(i) +MHA(V(i),V(i),V(i)))),

F(x) = LN(x+ FC(δ(FC(x)))),
(5)
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where FC, LN and δ are the fully-connected layer, layer normalization, and
activation function, respectively. Moreover, inter-layer global feature interaction
is devised to obtain a more comprehensive global feature with the outputs from
all the blocks as:

g̃I = Wg ∗Concat(g
(0)
I ,g

(1)
I , ...,g

(Ne)
I ), (6)

where Wg is a learnable weight matrix. Finally, VIT is encoded into:

Ṽ = Concat(g̃I ,v
(Ne)
1 ,v

(Ne)
2 , ...,v

(Ne)
NI

). (7)

Sentence Decoder.Given the �ne-grained visual features Ṽ from the visual-
semantic encoder, a Transformer-based sentence decoder is exploited to gener-
ate sentences. Similarly, the sentence decoder is implemented as Nd Transformer
blocks, where each Transformer-style block consists of a masked multi-head self-
attention layer [39], a multi-head cross-attention layer, and a feed-forward layer.

Let H(0)
0:Ns−1 = {h(0)

0 ,h
(0)
1 , ...,h

(0)
Ns−1} stand for the textual features of the sen-

tence that describes the input image I, where h
(0)
t is the textual feature of the

t-th word wt in sentence S. Speci�cally, at the t-th decoding timestep, the i-th
decoder block operates as:

h
(i+1)
t = F(LN(h̃

(i)
t +MHA(h̃

(i)
t , Ṽ, Ṽ))),

h̃
(i)
t = LN(h

(i)
t +MaskedMHA(h

(i)
t ,H(i)

0:t,H
(i)
0:t)),

(8)

where MaskedMHA is the masked multi-head self-attention layer. Finally, we

use the output of �nal block h
(Nd)
t to predict next word wt+1 through softmax.

3.4 CLIP-weighted Cross-Entropy Loss

Following the conventional training strategy in image captioning, the captioning
model parametrized as θ is optimized by maximizing the likelihood of the ground-
truth sentence (i.e., standard cross-entropy loss):

θ∗ = arg max
θ

∑
(I,S)

log p(S|I; θ). (9)

By applying the chain rule, the log probability of the sentence can be decomposed
into the sum of the log probabilities over the ground-truth words:

log p(S|I; θ) =
Ns∑
t=1

log p(wt|I, {wi}t−1
i=0; θ). (10)

However, due to the existing distribution discrepancy between synthetic and
real images, the standard cross-entropy loss is not optimal in this scenario, where
it treats low-quality synthetic images as important as high-quality ones, thereby
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impeding cross-modal learning of the captioning model. To address this chal-
lenge, we propose a novel CLIP-weighted cross-entropy loss. Unlike the standard
cross-entropy loss, which treats all synthetic image-text pairs equally, our pro-
posed CLIP-weighted cross-entropy loss dynamically adjusts the training loss for
each sample based on the global vision-language similarity score [11]:

log p(S|I; θ) = cI

Ns∑
t=1

log p(wt|I, {wi}t−1
i=0; θ),

cI = CLIPScore(I, S) = min(1.0, w ∗ gI · gS

∥gI∥∥gS∥
),

(11)

where w is the scaling factor, gI and gS are the global CLIP embeddings of the
synthetic image and the ground-truth sentence, respectively. With this additional
weighting coe�cient, CLIP-weighted cross-entropy loss penalizes the low-quality
synthetic pairs for improved learning of vision-language alignment.

4 Experiments

4.1 Datasets and Experimental Settings

Datasets. We empirically verify and analyze the e�ectiveness of our PCM-
Net on two widely adopted image captioning benchmarks: MSCOCO [23] and
Flickr30k [31]. There are �ve human-annotated sentences per image in these
datasets. For fair comparisons, we follow the Karpathy split [14] and take 113,287
images for training, 5,000 images for validation, and 5,000 images for testing on
MSCOCO. For Flickr30k which consists of 31,783 images, we use 1,000 images for
validation, 1,000 for testing and the rest for training. It is worth noting that we
only use the text corpus in training split following the zero-shot image captioning
settings. We use Stable Di�usion [35] to synthesize an image for each caption
in training corpus, resulting in SynthImgCap dataset consisting of 542,401 and
144,541 synthetic image-text pairs for MSCOCO and Flickr30k, respectively.

Implementation Details. In PCM-Net, the visual-semantic encoder and
sentence decoder are built withNe = Nd = 3 Transformer blocks. The size of hid-
den state in each Transformer block is 512. We utilize CLIP-ViT-L/14 to extract
visual and textual features as in CgT-GAN [51]. As a result, each input image is
represented as a 768-dimensional global feature vector plus a 1,024-dimensional
grid feature map for local patches. Gaussian noise is injected into global feature
vector in training following CapDec [27]. We build the visual concept vocabu-
lary C from the high-frequency nouns in MSCOCO training corpus, and each
concept is represented as a 768-dimensional textual feature in CLIP space. The
visual and textual patch features extracted by CLIP are further mapped into the
common space with 512 dimensions through a fully connected layer. During the
training stage, PCM-Net is optimized with Adam [15] optimizer on CXE loss.
The whole optimization process takes 12 epochs with the learning rate schedul-
ing strategy in [39]. The warmup steps and batch size are set as 10,000 and 32.
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Table 1: Performance of our PCM-Net and other state-of-the-art approaches on the
test split of the MSCOCO and Flickr30k datasets under the in-domain zero-shot set-
ting. † denotes the use of real images in training.

Methods Backbone
MSCOCO Flickr30k

B4 M R C S B4 M R C S

ZeroCap [38] ViT-B/32 7.0 15.4 31.8 34.5 9.2 5.4 11.8 27.3 16.8 6.2
MAGIC [37] ViT-B/32 12.9 17.4 39.9 49.3 11.3 6.4 13.1 31.6 20.4 7.1
CapDec [27] RN50x4 26.4 25.1 51.8 91.8 - 17.7 20.0 43.9 39.1 -
DeCap [17] ViT-B/32 24.7 25.0 - 91.2 18.7 21.2 21.8 - 56.7 15.2
ViECap [7] ViT-B/32 27.2 24.8 - 92.9 18.2 21.4 20.1 - 47.9 13.6
SynTIC [24] ViT-B/32 29.9 25.8 53.2 101.1 19.3 22.3 22.4 47.3 56.6 16.6
PCM-Net ViT-B/32 31.5 25.9 53.9 103.8 19.7 26.9 23.0 50.1 61.3 16.8

CgT-GAN � [51] ViT-L/14 30.3 26.9 54.5 108.1 20.5 24.1 22.6 48.2 64.9 16.1
PCM-Net ViT-L/14 33.6 26.9 55.4 113.6 20.8 28.5 24.3 51.4 69.5 18.2

At inference, we adopt beam search strategy with the beam size as 3. We report
the performances of PCM-Net over �ve evaluation metrics: BLEU-4 [30] (B4),
METEOR [4] (M), ROUGE [22] (R), CIDEr [40] (C), and SPICE [2] (S).

4.2 Performance Comparison

In-domain Zero-shot Image Captioning. We conduct experiments on MS-
COCO and Flickr30k datasets under the in-domain settings, where the model is
trained on the training corpus and evaluated on the test split of the same dataset.
Table 1 summarizes the performance comparisons between the state-of-the-art
models and our PCM-Net. All runs are brie�y grouped into three directions: (1)
zero-shot methods without further training (e.g., ZeroCap [38]) that repurpose
the text-to-image matching models to generate captions; (2) traditional meth-
ods (e.g., MAGIC [37], CapDec [27], DeCap [17], ViECap [7]) that exploit the
potent cross-modal alignment capabilities of CLIP to bridge the modality gap;
(3) the approaches (e.g., SynTIC [24]) that utilize synthetic image-text pairs
created by o�-the-shelf text-to-image generation models. As shown in the table,
our PCM-Net consistently exhibits better performances than the state-of-the-
art methods across all the metrics on both MSCOCO and Flickr30k datasets. In
particular, the CIDEr score of PCM-Net can achieve 113.6%, which leads to an
absolute improvement of 5.5% over CgT-GAN (CIDEr: 108.1%). This demon-
strates the e�ectiveness of leveraging synthetic image-text data for mitigating
the modality gap in pixel space. Compared to the method that does not involve
further training (e.g., ZeroCap), traditional methods (e.g., ViECap [7]) improve
the performances by exploiting the cross-modal alignment of CLIP to bridge
the modality gap. Though SynTIC [24] manages to enhance performances by
training on synthetic image-text pairs in a similar spirit, our PCM-Net substan-
tially outperforms it with a signi�cant margin. This demonstrates the merits of
exploring �ne-grained spatial visual features extracted from CLIP and applying
patch-wise cross-modal feature mix-up to mitigate unfaithful content in synthetic



Unleashing Text-to-Image Di�usion Prior for Zero-Shot Image Captioning 11

Table 2: Performance of our PCM-Net and other state-of-the-art approaches on the
test split of the MSCOCO and Flickr30k datasets under the cross-domain zero-shot
setting. † denotes the use of real images in training.

Methods Backbone
MSCOCO ⇒ Flickr30k Flickr30k ⇒ MSCOCO
B4 M R C S B4 M R C S

MAGIC [37] ViT-B/32 6.2 12.2 31.3 17.5 - 5.2 12.5 30.7 18.3 -
CapDec [27] RN50x4 17.3 18.6 42.7 35.7 - 9.2 16.3 36.7 27.3 -
DeCap [17] ViT-B/32 16.3 17.9 - 35.7 11.1 12.1 18.0 - 44.4 10.9
ViECap [7] ViT-B/32 17.4 18.0 - 38.4 11.2 12.6 19.3 - 54.2 12.5
SynTIC [24] ViT-B/32 17.9 18.6 42.7 38.4 11.9 14.6 19.4 40.9 47.0 11.9
PCM-Net ViT-B/32 20.8 19.2 45.2 45.5 12.9 17.1 19.6 43.2 54.9 12.8

CgT-GAN � [51] ViT-L/14 17.3 19.6 43.9 47.5 12.9 15.2 19.4 40.9 58.7 13.4
PCM-Net ViT-L/14 23.9 21.2 47.8 55.9 14.2 17.9 20.3 44.0 61.3 13.5

Reference: 
A little girl is eating a hot dog 
and riding in a shopping cart
DeCap: 
a young girl holding a piece 
of food in front of her
ViECap: 
a young girl holding a hot 
dog in her hands
PCM-Net: 
a little girl eating a hot dog in 
a shopping cart

Reference:
A herd of zebras grazing in a 
field and a rainbow
DeCap:
a herd of zebra standing in a 
field near some grass
ViECap:
a group of zebras that are 
standing in the grass
PCM-Net:
a group of zebras in a field with 
a rainbow in the background

Reference:
A little boy sleeping on a couch 
holding a Wii controller
DeCap: 
a child on a couch with a 
remote in his hand
ViECap: 
a young boy is playing with a 
remote control
PCM-Net: 
a little boy is sleeping on a 
couch with a remote

Reference: 
A sheep standing on a dirt road 
next to a rock
DeCap: 
a sheep with its head is 
standing near two black sheep
ViECap: 
a sheep that is standing in the 
grass
PCM-Net: 
a sheep standing next to a pile 
of rocks

Reference:  
A man cooking hot dogs on a 
grill
DeCap: 
a man in a kitchen holding a 
hot dog and some sandwiches
ViECap: 
a man standing in front of a 
grill holding a hot dog
PCM-Net: 
an older man cooking hot 
dogs on a grill

Fig. 3: Examples of image captioning results generated by DeCap [17], ViECap [7] and
our PCM-Net, coupled with the corresponding ground-truth sentences(Reference).

images. Furthermore, PCM-Net leverages CLIP to prioritize high-quality syn-
thetic image-text pairs. Similar trends are also observed in the Flickr30k dataset.
This again con�rms the advantage of our proposal.

Cross-domain Zero-shot Image Captioning.Next, we evaluate our PCM-
Net under the cross-domain settings, where the model is evaluated on the test
split of a di�erent dataset. As shown in Table 2, the performance trends in
cross-domain settings are similar to those in in-domain settings. Concretely, our
PCM-Net surpasses the state-of-the-art techniques (CgT-GAN) by an absolute
improvement of 8.4% in CIDEr score on the MSCOCO ⇒ Flickr30k task. The
results again demonstrate the e�ectiveness of unfaithful content mitigation and
emphasis on high-quality synthetic pairs for zero-shot image captioning.

Qualitative Analysis. Figure 3 shows several qualitative results of our
PCM-Net and two approaches(i.e., DeCap and ViECap) on MSCOCO dataset,
coupled with one human-annotated ground-truth sentence (Reference). From
these exemplar results, it is easy to see that our PCM-Net can predict more
semantically relevant and logically correct sentences. For instance, in the �rst
example, both DeCap and ViECap are only aware of the major objects (girl
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Table 3: Ablation study on each design in PCM-Net on MSCOCO under the in-domain
zero-shot setting. Base denotes the vanilla Transformer-based encoder-decoder model.
Mix-up represents the use of patch-wise cross-modal feature mix-up mechanism.CXE
refers to the CLIP-weighted cross-entropy loss.

Base Mix-up CXE
MSCOCO

B4 M R C S

✓ 33.0 26.3 54.8 108.9 20.2
✓ ✓ 33.3 26.8 55.0 111.6 20.7
✓ ✓ 33.2 26.4 55.1 112.0 20.5
✓ ✓ ✓ 33.6 26.9 55.4 113.6 20.8
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Fig. 4: Ablation study on hyperparameters in PCM-Net on MSCOCO.

and hot dog), while ignoring the salient object of shopping cart. Instead, by
employing a text-to-image di�usion prior for zero-shot image captioning and
applying PCM plus CXE loss to boost the training, our PCM-Net e�ectively
captures all signi�cant objects in the image (girl, hot dog, and shopping cart),
yielding more accurate and descriptive sentences.

4.3 Experimental Analysis

Ablation Study. We conduct ablation study to investigate how each compo-
nent in our PCM-Net in�uences the overall performances on MSCOCO Karpathy
test split. Table 3 presents the performance comparisons among di�erent ablated
runs of our PCM-Net. We start with a Transformer-based encoder-decoder model
(Base), which is trained on synthetic pairs in a supervised manner. Next, by in-
corporating the patch-wise cross-modal feature mix-up mechanism (Base+Mix-

up) during training, we observe clear performance boosts. This implies that the
mixed cross-modal features can mitigate unfaithful content in synthetic images,
and thus improve visual-semantic learning. In addition, we also apply the CLIP-
weighted cross-entropy loss to the base model. In this way, Base+CXE exhibits
better performance, verifying the merit of concentration on high-quality pseudo
pairs. Finally, we integrate both patch-wise cross-modal feature mix-up mech-
anism and the CLIP-weighted cross-entropy loss, Base+Mix-up+CXE (i.e.,
our PCM-Net) achieves the best performances across all the evaluation metrics.
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Table 4: Performance of ViECap and two variants equipped with our proposals on
the validation split of NoCaps [1] benchmark under the cross-domain zero-shot setting.

Methods Backbone
MSCOCO ⇒ NoCaps val

In-domain Near-domain Out-of-domain Overall
C S C S C S C S

ViECap [7] ViT-B/32+GPT-2Base 61.1 10.4 64.3 9.9 65.0 8.6 66.2 9.5
SYN-ViECap ViT-B/32+GPT-2Base 61.7 10.5 68.5 10.3 71.4 9.4 70.5 10.0
PCM-ViECap ViT-B/32+GPT-2Base 66.0 10.7 72.7 10.6 75.7 9.7 74.7 10.3

Ablation on Hyperparameters in PCM and CXE. We perform ab-
lation analyses on three crucial hyperparameters in our PCM-Net. Firstly, we
investigate the impact of varying the number (K) of salient visual concepts in
PCM. In Figure 4 (a), a consistent performance improvement is observed as K
increases from 1 to 5, with a slight decline beyond 5, likely due to the intro-
duction of noisy concepts with an excessively large K. Secondly, we explore the
in�uence of replacing di�erent numbers (M) of visual patches in PCM. Figure
4 (b) exhibits similar trends, indicating that excessive replacement of meaning-
ful visual patches by text-based patches leads to a dominance of text features
and subsequent degradation in representation capacity. Lastly, we scrutinize the
hyperparameter in CXE loss by varying the scaling factor (w) from 1 to 6. Fig-
ure 4 (c) shows the best results when w is set to 4, but performance degrades
when w exceeds 4 due to higher CLIPScore weights being assigned to low-quality
pairs, reducing CXE loss to vanilla cross-entropy loss. Based on these empirical
analyses, we set K, M , and w as 5, 5, and 4, respectively.

4.4 Framework compatibility

To verify the generalizability of our methods, we follow the training mecha-
nism of ViECap [7] and evaluate the models on another widely used bench-
mark, NoCaps [1]. We �rst upgrade ViECap to SYN-ViECap by replacing the
CLIP textual features of the input sentence with the CLIP visual features of
the generated image by di�usion model for training. As shown in Table 4, SYN-
ViECap outperforms ViECap across all metrics on the NoCaps validation split,
demonstrating the advantage of text-to-image di�usion priors for ZIC. By fur-
ther integrating PCM and CXE into SYN-ViECap, PCM-ViECap achieves a
substantial performance boost across all metrics, particularly excelling in the
Out-of-domain category. This indicates its e�ectiveness in narrowing the distri-
bution discrepancy between synthetic and real images. In summary, our proposed
PCM mechanism and CXE loss can generalize well on various model structures
and achieve remarkable zero-shot transferability.

4.5 E�ect of the Training Data Size

We also explore the e�ect of training data size on PCM-Net following [7, 24].
This is done by randomly sampling various proportions of data from MSCOCO
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Fig. 5: Performance comparison of PCM-Net and SynTIC on MSCOCO with various
proportions of training data.

to train PCM-Net. As depicted in Figure 5, PCM-Net consistently outperforms
SynTIC across all data scales, especially in low-data scenarios. Notably, PCM-
Net trained with only 40% data surpasses SynTIC that uses the entire training
dataset (101.6 vs. 101.1). In summary, PCM-Net performs robustly with limited
training data and can be further improved by increasing the training data size.

5 Conclusion

In this paper, we propose PCM-Net for zero-shot image captioning, which aims
to mitigate the modality gap of CLIP for visual-semantic learning by leveraging
synthetic image-text data for training. Particularly, we employ an o�-the-shelf
text-to-image di�usion model to build a synthetic dataset, i.e., SynthImgCap.
For each input image, salient visual concepts are �rst constructed by performing
zero-shot entity classi�cation of images in CLIP space. After that, the patch-wise
cross-modal feature mix-up mechanism is proposed to mix the �ne-grained patch
features of the synthetic image with the textual features, reducing the �awed or
unfaithful details in the synthetic images. Finally, a visual-semantic encoder-
decoder is exploited to re�ne the derived features and generate a caption. To
improve the training of captioning model with noisy synthetic data, we propose
a novel CLIP-weighted cross-entropy loss to prioritize the high-quality image-
text pairs over the low-quality counterparts. Extensive experiments conducted on
MSCOCO and Flickr30k datasets demonstrate the superiority of our PCM-Net.

Broader Impact. Our PCM-Net is trained to produce image captions based
on learnt statistics of the training corpus and synthetic images, and thus the
biases rooted in those data will be re�ected in the outputs, resulting in negative
societal impacts. Hence more future research is necessary for addressing the issue.
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